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4–2 DIGITAL CIRCUITS

4.5 The original expression assumes precedence of over , that is, the expression is . The paren-
thesization must be retained for the correct result, , or the precedence must be swapped. 

4.6 The answers for parts (a), (b), (c) are as follows.

4.7  (a) (b)

4.9

(a)

(b)

4.12 (1) Including inverters makes the problem too difficult. (2) In modern PLD-based designs, inverters do cost
nothing and really can be ignored.

4.13  

  ⋅   + X Y Z⋅( )+
X ′ Y′ Z′+( )⋅

W X Y Z (W X Y Z′ W+ X ′ Y Z W′+ X Y Z W+ X Y′ Z)⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
W X Y Z W X Y Z′ W X Y Z W X′ Y⋅ ⋅ ⋅ ⋅ ⋅ ⋅+ Z W X Y Z W′ X Y Z⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ W X Y Z W X Y′ Z (T8)⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅+ +⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅=

0 0 0 0 T6′ T5′ T2′, ,( )+ + +=
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EXERCISE SOLUTIONS 4–3

4.14  

4.15 (a)  Cost is less —one less gate input.

4.19

4.20

4.21 For the minimal sum-of-products expression to equal the minimal product-of-sums expression, the correspond-
ing maps must have the opposite don’t-cares covered, so that the expressions yield the same value for the don’t-
care input combinations.

(a) Both mininal sum-of-products expressions cover cell 15; they are equal. The minimal product-of-sums
expression also covers cell 15, so the expressions are not equal. The s-of-p and p-of-s expressions require the
same number of gates, but the p-of-s requires one fewer input. 

(b) Both mininal sum-of-products expressions cover cell 3 and 9 and not 15; they are equal. The minimal
product-of-sums expression covers cell 15, and not 3 or 9, so the expressions are equal. The p-of-s expression
requires fewer gates and inputs. 
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4–4 DIGITAL CIRCUITS

4.22 Consensus terms that must be added to cover the hazards are “circled” with rectangles. 

4.28

4.29

4.31

4.35

4.37 Figure 3–4(d) is more appropriate, since electrically a TTL NOR gate is just the wired-AND of inverters. 

4.39

(a) True. If  then either  or . If  then either  or . Therefore,

, and .

Analyzing this circuit with the standard
method for feedback sequential circuits
(Section 5.5), we get the following
excitation equation:

Thus,  is a function of X alone, and
is independent of the circuit’s previous
“state.”
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X 1⋅ X (T1′)=

X Y Y′+( )⋅ X (T5)=

X Y⋅ X Y′⋅+ X (T8)=

X Y ′+( ) Y⋅ X Y⋅ Y ′ Y (T8)⋅+=

X Y⋅ Y Y′ (T6′)⋅+=

X Y⋅ 0 (T5′)+=

X Y (T1)⋅=

X1 X2 … Xn Xn⋅ ⋅ ⋅ ⋅ X1 X2 … Xn Xn⋅( ) (T6′, T7′ as required)⋅ ⋅ ⋅=

X1 X2 … Xn (T3′)⋅ ⋅ ⋅=

X1 X2 … Xn Xn+ + + + X1 X2 … Xn Xn+( ) (T6, T7 as required)+ + +=

X1 X2 … Xn+ + +( ) (T3)=
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A B, 0 1 or 1,0,= A B ′=



EXERCISE SOLUTIONS 4–5

4.41

A dual theorem may be written based on maxterms. 

4.46 Yes, 2-input NAND gates form a complete
set of logic gates. We prove the result in
the figure on the right by showing that
these gates can be used to make 2-input
AND gates, 2-input OR gates, and inverters,
which form a complete set.

4.52 Take the dual, “multiply out,” and take the
dual again. The result is the same as “add-
ing out.” 

4.58 (a) 16 ns. (c) 18 ns. (d) 10 ns. 

4.61 To make it easier to follow, we’ll take the
dual, multiply out, and then take the dual
again. Also, we’ll simplify using theorems  and , otherwise we’ll get a nonminimal result for sure. For
Figure 4–27:

For Figure 4-29:

4.63

F X1 … Xi, X i 1+ … Xn, ,,,( ) X1′ … Xi ′, , F 0 … 0 Xi 1+ … Xn, , , , ,( )⋅=

 X1′ … X i ′, , F 0 … 1 Xi 1+ … Xn, , , , ,( )⋅+

…
 X1′ … Xi ′, , F 1 … 1, , X i 1+ … Xn, , ,( )⋅+

2i minterms      2i  combs

       
T3′ T6′

F X Z⋅ Y ′ Z⋅ X′ Y Z′⋅ ⋅+ +=

FD X Z+( ) Y′ Z+( ) X′ Y Z′+ +( )⋅⋅=

X Y ′ Z ′ X Z Y Z Y ′ X′ Z Y ′ X ′ Z Z X ′ Z Z Y(T8, T5′, T2′)⋅ ⋅+⋅ ⋅+⋅ ⋅+⋅ ⋅+⋅ ⋅+⋅ ⋅=

X Y ′ Z ′⋅ ⋅ X Y Z⋅ ⋅ X′ Y′ Z ′⋅ ⋅ X ′ Z⋅ Y Z (T3′, T6′)⋅+ + + +=

F X Y ′ Z ′+ +( ) X Y Z+ +( ) X ′ Y ′ Z+ +( ) X ′ Z+( ) Y Z+( ) (not minimal)⋅ ⋅ ⋅ ⋅=

F X Z ′⋅ Y′+=

FD X Z ′+( ) Y′⋅=

X Y ′ Z′ Y ′⋅ (T8)+⋅=

X Y ′⋅ Y ′ Z ′⋅  (T6′)+=

F X Y ′+( ) Y′ Z′+( ) (minimal)⋅=
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4–6 DIGITAL CIRCUITS

4.69 For part (d), note that it is easiest to work with the product-of-sums directly; rather than multiplying out, one
simply enters the 0s on the map.  

4.70 Note that in these maps are drawn for the “true” function and we’ve written sum terms for the prime implicates
(the dual of prime implicants) directly, instead of using the complement method suggested in Section 4.3.6.  

4.72
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EXERCISE SOLUTIONS 4–7

4.73 Note that in these maps are drawn for the “true” function and we’ve written sum terms for the prime implicates
(the dual of prime implicants) directly, instead of using the complement method suggested in Section 4.3.6.

4.74

4.83 The name of the circuit comes from its output equation,
 F = 2B OR NOT 2B.
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