Tabla 1.- PROPIEDADES DE LA SERIE DISCRETA DE FOURIER.

Propiedad	Señal Periódica	Coeficientes de la Serie de Fourier
	$x[n]$ Periódicas con período N y $y[n]$ frecuencia fundamental $\Omega_0 = \frac{2\pi}{N}$	$\left. egin{aligned} Cx_k \ Cy_k \end{aligned} ight\}$ Periódica con período N
Linealidad	Ax[n] + By[n]	$ACx_k + BCy_k$
Desplazamiento en tiempo	$x[n-n_0]$	$Cx_k e^{-jk\frac{2\pi}{N}n_0}$
Desplazamiento en frecuencia	$x[n]e^{jM\frac{2\pi}{N}n}$	Cx_{k-M}
Conjugación	x*[n]	Cx_{-k}^*
Inversión en tiempo	x[-n]	Cx_{-k}
Escalamiento en tiempo	$x_m[n] = \begin{cases} x[\frac{n}{m}] & \text{si } n \text{ es } m \text{ if } i \text{ liplo de } m \\ 0 & \text{si } n \text{ no es } m \text{ if } i \text{ liplo de } m \end{cases}$	$\frac{1}{m}Cx_k \begin{pmatrix} vistas\ como\ peri\'odicas \\ con\ per\'iodo\ mN \end{pmatrix}$
Convolución periódica	$\sum_{r=< N>} x[r]y[n-r]$	$NCx_k Cy_k$
Multiplicación	x[n]y[n]	$\sum_{l=< N>} Cx_l Cy_{k-l}$
Primera diferencia	x[n] - x[n-1]	$(1 - e^{-jk\frac{2\pi}{N}})Cx_k$
Suma consecutiva	$\sum_{k=-\infty}^{n} x[k] \begin{pmatrix} \text{de valor finito y periódica} \\ \text{sólo si } Cx_0 = 0 \end{pmatrix}$	$\left(\frac{1}{(1-e^{-jk\frac{2\pi}{N}})}\right)Cx_k$
Simetría conjugada para señales reales	x[n] real	$\begin{cases} Cx_k = Cx^*_{-k} \\ Re(Cx_k) = Re(Cx_{-k}) \end{cases}$ $Im(Cx_k) = -Im(Cx_{-k})$ $ Cx_k = Cx_{-k} $ $\angle Cx_k = -\angle Cx_{-k}$
Señal real y par	x[n] real y par	Cx_k real y par
Señal real e impar	x[n] real e impar	Cx_k solo imaginario e impar
Descomposición par e impar de señales reales	$x[n] = x_p[n] + x_i[n] [x[n] real]$ $x_p[n] = Componente par de x[n]$ $x_i[n] = Componente impar de x[n]$	$Re(Cx_k)$ $jIm(Cx_k)$

Relación de Parseval para señales periódicas

$$\frac{1}{N} \sum_{n=< N>} \left| x[n] \right|^2 = \sum_{k=< N>} \left| Cx_k \right|^2$$

Tabla 2.- PROPIEDADES DE LA TRANSFORNADA DE FOURIER DE TIEMPO DISCRETO.

Propiedad	Señal Aperiódica	Transformada de Fourier
	x[n]	$X(\Omega)$ Periódicas con
	y[n]	$Y(\Omega)$ período 2π
Linealidad	Ax[n] + By[n]	$AX(\Omega) + BY(\Omega)$
Desplazamiento en tiempo	$x[n-n_0]$	$X(\Omega)e^{-j\Omega n_0}$
Desplazamiento en frecuencia	$x[n]e^{j\Omega_0n}$	$X(\Omega - \Omega_0)$
Conjugación	x*[n]	$X^*(-\Omega)$
Inversión en tiempo	x[-n]	$X(-\Omega)$
Expansión en tiempo	$x_{k}[n] = \begin{cases} x[\frac{n}{k}] & \text{si } n \text{ es } m \text{\'ultiplo } de k \\ 0 & \text{si } n \text{ no } es m \text{\'ultiplo } de k \end{cases}$	$X(k\Omega)$
Convolución	x[n] * y[n]	$X(\Omega)Y(\Omega)$
Multiplicación	x[n]y[n]	$\frac{1}{2\pi} \int_{2\pi} X(\theta) Y(\Omega - \theta) d\theta$
Diferenciación en tiempo	x[n] - x[n-1]	$(1 - e^{-j\Omega})X(\Omega)$
Acumulación	$\sum_{k=-\infty}^{n} x[k]$	$\left(\frac{1}{(1-e^{-j\Omega})}\right)X(\Omega) + \pi X(0) \sum_{k=-\infty}^{\infty} \delta(\Omega - 2\pi k)$
Diferenciación en frecuencia	n x[n]	$j\frac{d X(\Omega)}{d \Omega}$
Simetría conjugada para señales reales	x[n] real	$\begin{cases} X(\Omega) = X^*(-\Omega) \\ Re(X(\Omega)) = Re(X(-\Omega)) \\ Im(X(\Omega)) = -Im(X(-\Omega)) \\ X(\Omega) = X(-\Omega) \\ \angle X(\Omega) = -\angle X(-\Omega) \end{cases}$
Señal real y par	x[n] real y par	$X(\Omega)$ real y par
Señal real e impar	x[n] real e impar	$\mathit{X}(\Omega)$ solo imaginario e impar
Descomposición par e impar de señales reales	$x[n] = x_p[n] + x_i[n] [x[n] real]$ $x_p[n] = Componente par de x[n]$ $x_i[n] = Componente impar de x[n]$	$Re(X(\Omega))$ $jIm(X(\Omega))$

Relación de Parseval para señales aperiódicas

$$\sum_{n=-\infty}^{\infty} |x[n]|^2 = \frac{1}{2\pi} \int_{2\pi} |X(\Omega)|^2 d\Omega$$

Tabla 3.- PARES BASICOS DE LA TRANSFORMADA DE FOURIER DE TIEMPO DISCRETO.

Señal	Transformada de Fourier	Coeficientes de la serie de Fourier
$\sum_{k=< N>} C_k e^{jk\frac{2\pi}{N}n}$	$2\pi \sum_{k=-\infty}^{\infty} C_k \delta(\Omega - \frac{2\pi}{N}k)$	C_k
$e^{j\Omega_0 n}$	$2\pi \sum_{\ell=-\infty}^{\infty} \delta(\Omega - \Omega_0 - 2\pi\ell)$	$a) \Omega_0 = \frac{2\pi m}{N}$ $C_k = \begin{cases} 1 & k = m, m \pm N, m \pm 2N, \dots \\ 0 & otro \ valor \end{cases}$ $b) \frac{\Omega_0}{2\pi} \ irracional \Rightarrow Señal \ aperiódica$
$Cos(\Omega_0 n)$	$\pi \sum_{\ell=-\infty}^{\infty} \left[\delta(\Omega - \Omega_0 - 2\pi\ell) + \delta(\Omega + \Omega_0 - 2\pi\ell) \right]$	$a) \Omega_0 = \frac{2\pi m}{N}$ $C_k = \begin{cases} \frac{1}{2} & k = \pm m, \pm m \pm N, \pm m \pm 2N, \dots \\ 0 & otro \ valor \end{cases}$ $b) \frac{\Omega_0}{2\pi} \ irracional \Rightarrow Señal \ aperiódica$
$Sen(\Omega_0 n)$	$\frac{\pi}{j} \sum_{\ell=-\infty}^{\infty} \left[\delta(\Omega - \Omega_0 - 2\pi\ell) - \delta(\Omega + \Omega_0 - 2\pi\ell) \right]$	$a) \Omega_0 = \frac{2\pi r}{N}$ $C_k = \begin{cases} \frac{1}{2j} & k = r, r \pm N, r \pm 2N, \dots \\ -\frac{1}{2j} & k = -r, -r \pm N, -r \pm 2N, \dots \\ 0 & otro \ valor \end{cases}$ $b) \frac{\Omega_0}{2\pi} irracional \Rightarrow Se\~nal \ aperi\'odica$
x[n]=1	$2\pi \sum_{\ell=-\infty}^{\infty} \delta(\Omega - 2\pi\ell)$	$C_k = \begin{cases} 1 & k = 0, \pm N, \pm 2N, \dots \\ 0 & otro\ valor \end{cases}$
Onda cuadrada periódica $x[n] = \begin{cases} 1 & n \le N_1 \\ 0 & n > N_1 \end{cases}$ $y x\{n+N\} = x[n]$	$2\pi \sum_{k=-\infty}^{\infty} C_k \delta(\Omega - \frac{2\pi}{N}k)$	$C_k = \begin{cases} \frac{Sen(\frac{2\pi}{N}k(N_1 + \frac{1}{2}))}{NSen(\frac{2\pi}{N}\frac{k}{2})} & k \neq 0, \pm N, \pm 2N, \dots \\ \frac{2N_1 + 1}{N} & k = 0, \pm N, \pm 2N, \dots \end{cases}$
$\sum_{k=-\infty}^{\infty} \delta(n-kN)$	$\frac{2\pi}{N} \sum_{k=-\infty}^{\infty} \delta(\Omega - \frac{2\pi}{N}k)$	$C_k = \frac{1}{N} para toda k$
$\frac{a^n u[n], a < 1}{a}$	$\frac{1}{1-ae^{-j\Omega}}$	-
$x[n] = \begin{cases} 1 & n \le N_1 \\ 0 & n > N_1 \end{cases}$	$\frac{Sen(\Omega(N_1 + \frac{1}{2}))}{Sen(\frac{\Omega}{2})}$	-
$\frac{Sen(Wn)}{\pi n} = \frac{W}{\pi} Sinc(\frac{Wn}{\pi})$ $0 < W < \pi$	$X(\Omega) = \begin{cases} 1 & 0 \le \Omega \le W \\ 0 & W < \Omega \le \pi \end{cases}$	-
$\delta[n]$	$X(\Omega$) periódica con período 2π	-
u[n]	$\frac{1}{1 - e^{-j\Omega}} + \sum_{k = -\infty}^{\infty} \pi \delta(\Omega - 2\pi k)$	-
$\delta[n-n_0]$	$e^{-j\Omega n_0}$	-
$(n+1)a^nu[n], a < l$	$\frac{1}{(1-ae^{-j\Omega})^2}$	-
$\frac{(n+r-1)!}{n!(r-1)!}a^nu[n], a < I$	$\frac{1}{(1-ae^{-j\Omega})^r}$	-